💻
C++
  • C++学习指南
  • 第一章 基础入门
    • 1 C++初识
      • 1.1 Visual Studio 下载及安装
      • 1.2 第一个C++程序
      • 1.3 注释
      • 1.4 变量
      • 1.5 常量
      • 1.6 关键字
      • 1.7 标识符命名规则
  • 2 数据类型
    • 2.1 整型
    • 2.2 sizeof关键字
    • 2.3 实型(浮点型)
    • 2.4 字符型
    • 2.5 转义字符
    • 2.6 字符串型
    • 2.7 布尔类型 bool
    • 2.8 数据的输入
  • 3 运算符
    • 3.1 算术运算符
    • 3.2 赋值运算符
    • 3.3 比较运算符
    • 3.4 逻辑运算符
  • 4 程序流程结构
    • 4.1 选择结构
    • 4.2 循环结构
    • 4.3 跳转语句
  • 5 数组
    • 5.1 概述
    • 5.2 一维数组
    • 5.3 二维数组
  • 6 函数
    • 6.1 概述
    • 6.2 函数的定义
    • 6.3 函数的调用
    • 6.4 值传递
    • 6.5 函数的常见样式
    • 6.6 函数的声明
    • 6.7 函数的分文件编写
  • 7 指针
    • 7.1 指针的基本概念
    • 7.2 指针变量的定义和使用
    • 7.3 指针所占内存空间
    • 7.4 空指针和野指针
    • 7.5 const修饰指针
    • 7.6 指针和数组
    • 7.7 指针和函数
    • 7.8 指针、数组、函数
  • 8 结构体
    • 8.1 结构体基本概念
    • 8.2 结构体定义和使用
    • 8.3 结构体数组
    • 8.4 结构体指针
    • 8.5 结构体嵌套结构体
    • 8.6 结构体做函数参数
    • 8.7 结构体中const使用场景
    • 8.8 结构体案例
  • 第二章 核心编程
    • 9 内存分区模型
      • 9.1 程序运行前
      • 9.2 程序运行后
      • 9.3 new操作符
    • 10 引用
      • 10.1 引用的基本使用
      • 10.2 引用的注意事项
      • 10.3 引用做函数参数
      • 10.4 引用做函数返回值
      • 10.5 引用的本质
      • 10.6 常量的引用
    • 11 函数提高
      • 11.1 函数默认参数
      • 11.2 函数占位参数
      • 11.3 函数重载
    • 12 类和对象
      • 12.1 封装
      • 12.2 对象的初始化和清理
      • 12.3 C++对象模型和this指针
      • 12.4 友元
      • 12.5 运算符重载
      • 12.6 继承
      • 12.7 多态
    • 13 文件操作
      • 13.1 文本文件
      • 13.2 二进制文件
  • 第三章 提高编程
    • 14 模板
      • 14.1 模板的概念
      • 14.2 函数模板
      • 14.3 类模板
    • 15 STL初识
      • 15.1 STL的诞生
      • 15.2 STL基本概念
      • 15.3 STL六大组件
      • 15.4 STL中容器、算法、迭代器
      • 15.5 容器算法迭代器初识
    • 16 STL常用容器
      • 16.1 string容器
      • 16.2 vector容器
      • 16.3 deque容器
      • 16.4 评委打分案例
      • 16.5 stack容器
      • 16.6 queue容器
      • 16.7 list容器
      • 16.8 set/multiset容器
      • 16.9 map/multimap容器
      • 16.10 员工分组案例
    • 17 STL函数对象
      • 17.1 函数对象
      • 17.2 谓词
      • 17.3 内建函数对象
    • 18 STL常用算法
      • 18.1 常用遍历算法
      • 18.2 常用查找算法
      • 18.3 常用排序算法
      • 18.4 常用拷贝和替换算法
      • 18.5 常用集合算法
      • 18.6 常用算法生成算法
由 GitBook 提供支持
在本页
  • 1.构造函数和析构函数
  • 2.构造函数的分类及调用
  • 3.拷贝构造函数调用时机
  • 4.构造函数调用规则
  • 5.深拷贝与浅拷贝
  • 6.初始化列表
  • 7.类对象作为类成员
  • 8.静态成员

这有帮助吗?

  1. 第二章 核心编程
  2. 12 类和对象

12.2 对象的初始化和清理

  • 生活中我们买的电子产品都基本会有出厂设置,在某一天我们不用时候也会删除一些自己信息数据保证安全

  • C++中的面向对象来源于生活,每个对象也都会有初始设置以及 对象销毁前的清理数据的设置。

1.构造函数和析构函数

对象的初始化和清理也是两个非常重要的安全问题

​ 一个对象或者变量没有初始状态,对其使用后果是未知

​ 同样的使用完一个对象或变量,没有及时清理,也会造成一定的安全问题

c++利用了构造函数和析构函数解决上述问题,这两个函数将会被编译器自动调用,完成对象初始化和清理工作。

对象的初始化和清理工作是编译器强制要我们做的事情,因此如果我们不提供构造和析构,编译器会提供

编译器提供的构造函数和析构函数是空实现。

  • 构造函数:主要作用在于创建对象时为对象的成员属性赋值,构造函数由编译器自动调用,无须手动调用。

  • 析构函数:主要作用在于对象销毁前系统自动调用,执行一些清理工作。

构造函数语法:类名(){}

  1. 构造函数,没有返回值也不写void

  2. 函数名称与类名相同

  3. 构造函数可以有参数,因此可以发生重载

  4. 程序在调用对象时候会自动调用构造,无须手动调用,而且只会调用一次

析构函数语法: ~类名(){}

  1. 析构函数,没有返回值也不写void

  2. 函数名称与类名相同,在名称前加上符号 ~

  3. 析构函数不可以有参数,因此不可以发生重载

  4. 程序在对象销毁前会自动调用析构,无须手动调用,而且只会调用一次

class Person
{
public:
	//构造函数
	Person()
	{
		cout << "Person的构造函数调用" << endl;
	}
	//析构函数
	~Person()
	{
		cout << "Person的析构函数调用" << endl;
	}

};

void test01()
{
	Person p;
}

int main() {
	
	test01();

	system("pause");

	return 0;
}

2.构造函数的分类及调用

两种分类方式:

​ 按参数分为: 有参构造和无参构造

​ 按类型分为: 普通构造和拷贝构造

三种调用方式:

​ 括号法

​ 显示法

​ 隐式转换法

示例:

//1、构造函数分类
// 按照参数分类分为 有参和无参构造   无参又称为默认构造函数
// 按照类型分类分为 普通构造和拷贝构造

class Person {
public:
	//无参(默认)构造函数
	Person() {
		cout << "无参构造函数!" << endl;
	}
	//有参构造函数
	Person(int a) {
		age = a;
		cout << "有参构造函数!" << endl;
	}
	//拷贝构造函数
	Person(const Person& p) {
		age = p.age;
		cout << "拷贝构造函数!" << endl;
	}
	//析构函数
	~Person() {
		cout << "析构函数!" << endl;
	}
public:
	int age;
};

//2、构造函数的调用
//调用无参构造函数
void test01() {
	Person p; //调用无参构造函数
}

//调用有参的构造函数
void test02() {

	//2.1  括号法,常用
	Person p1(10);
	//注意1:调用无参构造函数不能加括号,如果加了编译器认为这是一个函数声明
	//Person p2();

	//2.2 显式法
	Person p2 = Person(10); 
	Person p3 = Person(p2);
	//Person(10)单独写就是匿名对象  当前行结束之后,马上析构

	//2.3 隐式转换法
	Person p4 = 10; // Person p4 = Person(10); 
	Person p5 = p4; // Person p5 = Person(p4); 

	//注意2:不能利用 拷贝构造函数 初始化匿名对象 编译器认为是对象声明
	//Person p5(p4);
}

int main() {

	test01();
	//test02();

	system("pause");

	return 0;
}

3.拷贝构造函数调用时机

C++中拷贝构造函数调用时机通常有三种情况

  • 使用一个已经创建完毕的对象来初始化一个新对象

  • 值传递的方式给函数参数传值

  • 以值方式返回局部对象

示例:

class Person {
public:
	Person() {
		cout << "无参构造函数!" << endl;
		mAge = 0;
	}
	Person(int age) {
		cout << "有参构造函数!" << endl;
		mAge = age;
	}
	Person(const Person& p) {
		cout << "拷贝构造函数!" << endl;
		mAge = p.mAge;
	}
	//析构函数在释放内存之前调用
	~Person() {
		cout << "析构函数!" << endl;
	}
public:
	int mAge;
};

//1. 使用一个已经创建完毕的对象来初始化一个新对象
void test01() {

	Person man(100); //p对象已经创建完毕
	Person newman(man); //调用拷贝构造函数
	Person newman2 = man; //拷贝构造

	//Person newman3;
	//newman3 = man; //不是调用拷贝构造函数,赋值操作
}

//2. 值传递的方式给函数参数传值
//相当于Person p1 = p;
void doWork(Person p1) {}
void test02() {
	Person p; //无参构造函数
	doWork(p);
}

//3. 以值方式返回局部对象
Person doWork2()
{
	Person p1;
	cout << (int *)&p1 << endl;
	return p1;
}

void test03()
{
	Person p = doWork2();
	cout << (int *)&p << endl;
}


int main() {

	//test01();
	//test02();
	test03();

	system("pause");

	return 0;
}

4.构造函数调用规则

默认情况下,c++编译器至少给一个类添加3个函数

1.默认构造函数(无参,函数体为空)

2.默认析构函数(无参,函数体为空)

3.默认拷贝构造函数,对属性进行值拷贝

构造函数调用规则如下:

  • 如果用户定义有参构造函数,c++不在提供默认无参构造,但是会提供默认拷贝构造

  • 如果用户定义拷贝构造函数,c++不会再提供其他构造函数

示例:

class Person {
public:
	//无参(默认)构造函数
	Person() {
		cout << "无参构造函数!" << endl;
	}
	//有参构造函数
	Person(int a) {
		age = a;
		cout << "有参构造函数!" << endl;
	}
	//拷贝构造函数
	Person(const Person& p) {
		age = p.age;
		cout << "拷贝构造函数!" << endl;
	}
	//析构函数
	~Person() {
		cout << "析构函数!" << endl;
	}
public:
	int age;
};

void test01()
{
	Person p1(18);
	//如果不写拷贝构造,编译器会自动添加拷贝构造,并且做浅拷贝操作
	Person p2(p1);

	cout << "p2的年龄为: " << p2.age << endl;
}

void test02()
{
	//如果用户提供有参构造,编译器不会提供默认构造,会提供拷贝构造
	Person p1; //此时如果用户自己没有提供默认构造,会出错
	Person p2(10); //用户提供的有参
	Person p3(p2); //此时如果用户没有提供拷贝构造,编译器会提供

	//如果用户提供拷贝构造,编译器不会提供其他构造函数
	Person p4; //此时如果用户自己没有提供默认构造,会出错
	Person p5(10); //此时如果用户自己没有提供有参,会出错
	Person p6(p5); //用户自己提供拷贝构造
}

int main() {

	test01();

	system("pause");

	return 0;
}

5.深拷贝与浅拷贝

深浅拷贝是面试经典问题,也是常见的一个坑

浅拷贝:简单的赋值拷贝操作

深拷贝:在堆区重新申请空间,进行拷贝操作

示例:

class Person {
public:
	//无参(默认)构造函数
	Person() {
		cout << "无参构造函数!" << endl;
	}
	//有参构造函数
	Person(int age ,int height) {
		
		cout << "有参构造函数!" << endl;

		m_age = age;
		m_height = new int(height);
		
	}
	//拷贝构造函数  
	Person(const Person& p) {
		cout << "拷贝构造函数!" << endl;
		//如果不利用深拷贝在堆区创建新内存,会导致浅拷贝带来的重复释放堆区问题
		m_age = p.m_age;
		m_height = new int(*p.m_height);
		
	}

	//析构函数
	~Person() {
		cout << "析构函数!" << endl;
		if (m_height != NULL)
		{
			delete m_height;
		}
	}
public:
	int m_age;
	int* m_height;
};

void test01()
{
	Person p1(18, 180);

	Person p2(p1);

	cout << "p1的年龄: " << p1.m_age << " 身高: " << *p1.m_height << endl;

	cout << "p2的年龄: " << p2.m_age << " 身高: " << *p2.m_height << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:如果属性有在堆区开辟的,一定要自己提供拷贝构造函数,防止浅拷贝带来的问题

6.初始化列表

作用:

C++提供了初始化列表语法,用来初始化属性

语法:构造函数():属性1(值1),属性2(值2)... {}

示例:

class Person {
public:

	传统方式初始化
	//Person(int a, int b, int c) {
	//	m_A = a;
	//	m_B = b;
	//	m_C = c;
	//}

	//初始化列表方式初始化
	Person(int a, int b, int c) :m_A(a), m_B(b), m_C(c) {}
	void PrintPerson() {
		cout << "mA:" << m_A << endl;
		cout << "mB:" << m_B << endl;
		cout << "mC:" << m_C << endl;
	}
private:
	int m_A;
	int m_B;
	int m_C;
};

int main() {

	Person p(1, 2, 3);
	p.PrintPerson();


	system("pause");

	return 0;
}

7.类对象作为类成员

C++类中的成员可以是另一个类的对象,我们称该成员为 对象成员

例如:

class A {}
class B
{
    A a;
}

B类中有对象A作为成员,A为对象成员

那么当创建B对象时,A与B的构造和析构的顺序是谁先谁后?

示例:

class Phone
{
public:
	Phone(string name)
	{
		m_PhoneName = name;
		cout << "Phone构造" << endl;
	}

	~Phone()
	{
		cout << "Phone析构" << endl;
	}

	string m_PhoneName;

};


class Person
{
public:

	//初始化列表可以告诉编译器调用哪一个构造函数
	Person(string name, string pName) :m_Name(name), m_Phone(pName)
	{
		cout << "Person构造" << endl;
	}

	~Person()
	{
		cout << "Person析构" << endl;
	}

	void playGame()
	{
		cout << m_Name << " 使用" << m_Phone.m_PhoneName << " 牌手机! " << endl;
	}

	string m_Name;
	Phone m_Phone;

};
void test01()
{
	//当类中成员是其他类对象时,我们称该成员为 对象成员
	//构造的顺序是 :先调用对象成员的构造,再调用本类构造
	//析构顺序与构造相反
	Person p("张三" , "苹果X");
	p.playGame();

}


int main() {

	test01();

	system("pause");

	return 0;
}

8.静态成员

静态成员就是在成员变量和成员函数前加上关键字static,称为静态成员

静态成员分为:

  • 静态成员变量

    • 所有对象共享同一份数据

    • 在编译阶段分配内存

    • 类内声明,类外初始化

  • 静态成员函数

    • 所有对象共享同一个函数

    • 静态成员函数只能访问静态成员变量

示例1 :静态成员变量

class Person
{
	
public:

	static int m_A; //静态成员变量

	//静态成员变量特点:
	//1 在编译阶段分配内存
	//2 类内声明,类外初始化
	//3 所有对象共享同一份数据

private:
	static int m_B; //静态成员变量也是有访问权限的
};
int Person::m_A = 10;
int Person::m_B = 10;

void test01()
{
	//静态成员变量两种访问方式

	//1、通过对象
	Person p1;
	p1.m_A = 100;
	cout << "p1.m_A = " << p1.m_A << endl;

	Person p2;
	p2.m_A = 200;
	cout << "p1.m_A = " << p1.m_A << endl; //共享同一份数据
	cout << "p2.m_A = " << p2.m_A << endl;

	//2、通过类名
	cout << "m_A = " << Person::m_A << endl;


	//cout << "m_B = " << Person::m_B << endl; //私有权限访问不到
}

int main() {

	test01();

	system("pause");

	return 0;
}

示例2:静态成员函数

class Person
{

public:

	//静态成员函数特点:
	//1 程序共享一个函数
	//2 静态成员函数只能访问静态成员变量
	
	static void func()
	{
		cout << "func调用" << endl;
		m_A = 100;
		//m_B = 100; //错误,不可以访问非静态成员变量
	}

	static int m_A; //静态成员变量
	int m_B; // 
private:

	//静态成员函数也是有访问权限的
	static void func2()
	{
		cout << "func2调用" << endl;
	}
};
int Person::m_A = 10;


void test01()
{
	//静态成员变量两种访问方式

	//1、通过对象
	Person p1;
	p1.func();

	//2、通过类名
	Person::func();


	//Person::func2(); //私有权限访问不到
}

int main() {

	test01();

	system("pause");

	return 0;
}

上一页12.1 封装下一页12.3 C++对象模型和this指针

最后更新于4年前

这有帮助吗?